A Comparison of Library Tracking Methods in High Performance Compgting

(@ Los Alamos

7 NATIONAL LABORATORY

AN

e e ® °

Introduction

High Performance Computing (HPC) software support teams must maintain multiple versions of the same libraries to
ensure code compatibility and consistent results on long running jobs. Maintaining unused libraries is a waste of resources,
but it is difficult to find unused libraries without a tracking system. We selected the Automatic Library Tracking Database
(ALTD) and the Linux Auditing Utility (auditd) as potential tracking solutions. ALTD was selected because of its capability,

and auditd was selected because of its maturity.

With a capable tool, system administrators would then be able to generate data similar to Figure 1 and Figure 2 providing

Dennis Trujillo, Chris Delager, William Rosenberger

.PRODE

Parallel Reconfigurable
B Observational Environment

Performance Testing

The increase in compilation and run time caused by ALTD and auditd was studied to determine system impact. The
compilation was timed for a “do nothing” MPI program as well as with the more complicated Linpack in Figure 4. Although
auditd outperformed ALTD for the simple program, auditd’s compilation overhead increased significantly as the program
became more complex. Figure 5 illustrates the increase in runtime for the “do nothing” MPI program. Increase in runtime
of Linpack caused by ALTD and audit is illustrated in Figure 6 and 7 respectively. ALTD has an average increase of 0.1209
seconds while auditd has an average increase of 0.0030 seconds. None of our data suggests a relationship between
increase in runtime and number of processors problem size. Therefore from a performance standpoint ALTD and auditd

insight about which libraries can be removed. In Figure 1 openmpi-1.6.5 is introduced to the system and slowly adopted by are both viable.

the user base. The administrators can then find the individuals still using 1.5.4 and encourage them to move to 1.6.5. In
Figure 2 some users try to adopt a new version of gcc but decide to move back to the old version, possibly due to a bug.

“ ALTD
W ALTD

D
o

@ auditd

B
o
o

Number of Users
Number of Users

™ quditd

_openmpi-1 0.4

_openmpi-1 6.5

N
o

N
o
o

-
o

9 16 25 36 49 64
Linpack ‘

Simple MPI Program

Figure 4: Additional Compilation Time
Required

Number of Processors

Figure 5: Additional Runtime for a Simple
MPI Program

Figure 1: Simulated New Software Version
Acceptance

Figure 2: Simulated New Software Version
Rejection

Linux Auditing Utilit
The Linux Auditing Utility auditd is a Linux Kernel daemon included by default in many Linux distributions. Auditd tracks
library usage by watching for when individual files are accessed. System administrators must place an auditd watcher on
every library to be tracked. Although originally designed for creating an audit trail describing the use of secured system

resources, auditd is capable of following individual library files to watch for when they are used. Conveniently, auditd
includes command line tools for interacting with the log file. Using these tools, we are able to search for usage instances

for individual libraries. /

Runtime Difference (s)

ol

s
272 3%3 4ug
02—

/7/ ririi;i;iir

Runtime Difference (s)

e

l
2%2 3%3

\ 5*5 k
02 676 7%7 gxg

Processor Grid (P*il)\

Problem Size (N)

Processor Grid (P";\QT\

Problem Size (N)

Automatic Library Tracking Database

The Automatic Library Tracking Database was originally presented at the Cray Users Group with the goal of creating a low-
overhead solution for tracking library usage. We expand upon their original product to provide a greater range of
functionality and make the system more user friendly.

Figure 7: Additional Runtime for Linpack
With auditd

Figure 6: Additional Runtime for Linpack
With ALTD

ALTD vs. auditd

Automatic Library Tracking Database

Cons

Requires a MySQL
database

Track dynamic libraries
used at compile time, not
necessarily runtime

—

As illustrated in Figure 3, ALTD makes use of a series of scripts to wrap the job launcher and Linux linker in order to collect
data on when libraries are used. Information on which libraries were linked into a program, as well as when that program
is run is stored in a MySQL database. We have expanded on the number of supported job launchers, as well as creay

Conclusion

We found over the course of testing that the Automatic
Library Tracking Database is the best solution out of
those investigated. From a performance standpoint both
ALTD and auditd are viable but, ALTD tracks more types
of libraries and does this automatically. Additions made
to the ALTD software have allowed the program to run on
a larger variety of systems, and improvements have been
made to user interaction with the database. With
respect to an HPC setting, many libraries are difficult or
impossible to track with auditd preventing it from being a
viable tracking option.

Contact Info

Denis Trujillo : dptrul0O@nmsu.edu
Chris Delager: cadejage@mtu.edu
William Rosenburger: wrosenberger@live.com

tools to easily query the database to get a count of each time a library is used.
Pros
 Datais well organizedina -
MySQL database
Theoretical constant low
overhead
Track all libraries
automatically

MySQL Database

Wrapper Scripts Linkline Table

Table Data:
* Linkline_id: Reference number to this record
* Unique list of libraries used in a compilation

Linker Wrapper

* Gets list of libraries used
* Creates Linkline entry
*Creates Link Tag entry

Linux Auditing Utility

Cons

Dynamically linked
libraries can’t be reliably
tracked, the .so files are
cached in memory and not
read at every run
Statically linked libraries
can’t be track at runtime
as they are in the
executable

A single make can
generate numerous log
entries

Pros

Link Tag Table e Standard Linux Daemon

* Well tested by the Linux
community

* Logs to aflatfile

Table Data:

*Tag _id: Reference number to this record
* Reference number to the Linkline entry.
* Username, date linked, build machine

Job Launch Wrapper

* Pulls reference number to the Link Tag table from
the ALTD assembly header
* Creates Jobs table entry

Figure 3: ALTD Program Flow

Jobs Table

Table Data:
* Reference number to the Link Tag table
* Run machine, date run, username

LA-UR-13-25964

NM

STATE

UNIVERSITY

aind

NEW MEXICO TECH

» New Mexico
I CONSORTIUM

Michiganjlech,

Michigan Technological University

[STI NST

INFORMATION SCIENCE & TECHNOLOGY INSTITUTE

